El waves propagate in 3 dimensions

\rightarrow wave front B usually at some phase dist between fronts usually the wave length
say $=$ direction of wave (cont at that point For EM radiation "infinitely fan" from the source-'

$$
r \gg \lambda
$$

wave (rout 1 , by - plane waves

wave (ron BT
light waves hitting a surface can be both transmitted and re [ected
reflected

Reflection at a surface

speculcer reflection - from smooth sur lace like mirror

re fleeted light: $\vec{u}_{11}=\vec{v}_{\vec{\prime}}$ so 11 unchanged $\vec{u}_{1}=\vec{v}_{1}$ so \perp reverses dir

$$
\begin{gathered}
\vec{u}=\vec{u}_{11}+\vec{u}_{1}=\vec{v}_{11}-\vec{v}_{\perp} \\
\text { reflected angle } \tan \theta_{r}=\frac{u_{n}}{u_{1}}=\frac{v_{11}}{v_{1}}=\tan \theta_{a}
\end{gathered}
$$

\Rightarrow law of le lection: $\theta_{r}=\theta_{a}$
(not for dilluse re [lection ! - need very smooth
sm 1 ace)
Reflection at mirrors is almost per lect Regular mirror, loss is few ono loss (absorbed) Can make highly reflective mirrors w/ special coating, loss $<0.001 \%_{0}$ or better

Refraction
speed of light is $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in vacuum in mataicals, light slows down
\rightarrow interaction w/atoms i molecules

$$
v_{n}=\frac{c}{n} \quad n=\text { index of refraction }
$$

$n=1$ for vacuum, $x>1$ materials $\sim \frac{3}{2}$ glass
$\sim \frac{4}{3}$ water
~ 2.5 diamond
note: in materials, (req f does not change $c=\lambda f$ and $v_{n}=\lambda_{n} f=\frac{c}{n} \lambda f$
$\therefore \lambda_{n}=\frac{\lambda}{n} \quad \lambda$ is in vacuum
law of refraction

principle foleast time!
calculate time going from point 1 to point 2

$$
t=t_{1}+t_{2} \quad t_{1}=d_{1} / v_{1} \quad t_{2}=d_{2} / v_{2}
$$

we can vary x_{0} but not y_{1} is y_{2} and not $x_{1}+x_{2}$

$$
\begin{aligned}
& d_{1}=\sqrt{x_{1}^{2}+y_{1}^{2}}=\sqrt{x_{0}^{2}+y_{1}^{2}} \\
& d_{2}=\sqrt{x_{2}^{2}+y_{2}^{2}}=\sqrt{\left(x-x_{0}\right)^{2}+y_{2}^{2}}
\end{aligned}
$$

so $t=\frac{\sqrt{x_{0}^{2}+y_{1}^{2}}}{v_{1}}+\sqrt{\frac{\left(x-x_{0}\right)^{2}+y_{2}^{2}}{v_{2}}}$
to find minimum tace $\frac{d t}{d x_{0}}=0$

$$
\frac{d t}{d x_{0}}=\frac{1}{2} \frac{2 x_{0}}{\sqrt{(1)} v_{1}}+\frac{1}{2} \frac{2\left(x-x_{0}\right)(-1)}{\sqrt{(2)}}=0
$$

or $\frac{x_{0}}{v_{1} \sqrt{x_{0}^{2}+y_{1}^{2}}}=\frac{\left(x-x_{0}\right)}{\sqrt{2} \sqrt{\left(x-x_{0}\right)^{2}+y_{2}^{2}}}$

$$
\begin{aligned}
& \frac{x_{0}}{\sqrt{2}}=\sin \theta_{1} \text { and } \frac{\left(x-x_{0}\right)}{\sqrt{ }}=\sin \theta_{2} \\
& v_{1}=\frac{c}{n_{1}} \text { and } v_{2}=\frac{c}{n_{2}} \\
& \text { so } n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
\end{aligned}
$$

$v=$ velocity in the medium
$n_{1}=c / v_{1}$ for the modium.
for light $v=C$ in vacuum (and air)
in glass $v<C$ so $u=v / C>1 \sim 1.5$

$$
\sigma v=c / 1.5 \sim 2 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Relraction: bending 4 light as it goes
between 2 mediums
(air-glass, air-wata, etc.)
Srellis Law: law of refraction

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

θ is always with respect to normal
cases: $n_{1}<n_{2} \Rightarrow \sin \theta_{1}>\sin \theta_{2}$
$\therefore \theta_{1}>\theta_{2}$ so is bent towards normal

for $u_{2}<n_{1}$, its opposite \rightarrow as if light goes backwards in time
note: thur will also be some reflection at the boundoun
for glass \sim loss is around 4% intensity
so $n_{2}>n_{1}$ (1 ron smaller to larger n)
\Rightarrow bends fowands normal
for $n_{2}<n_{1}$ (aron langer to smaller n)
\Rightarrow bends away know normal
note: $c=\lambda f$ for light
$f=$ vibration req, $\lambda=$ how far in the medium for 1 cycle
so if $V=\frac{c}{n}=\frac{\lambda f}{n}$ then $\lambda=\frac{\lambda}{n}$ wave length in median but f is the same es: light goes thu slab of glass
ex:

$$
\begin{aligned}
n_{1} \sin \theta_{1} & =u_{2} \sin \theta_{2} \\
\sin \theta_{1} & =\sin 45^{\circ}=\frac{1}{\sqrt{2}}=1.5 \sin \theta_{2} \\
\quad \theta_{2} & =\sin ^{-1}\left(\frac{1}{1.5 \sqrt{2}}\right)=\sin ^{-1}(0.47)=28.1^{\circ} \\
\tan \theta_{2} & =\frac{d}{\text { thickness }}=\frac{d}{1 m} \\
d & =1 \cdot \tan \theta_{2}
\end{aligned}=0.53 \mathrm{~m}
$$

what angle does light leave slab?
$n_{2} \sin \theta_{2}=n_{1} \sin \theta_{f} \Rightarrow$ same eg as when it entered
what is displacement D when it exits?

Corner reflector

$$
\begin{aligned}
& \text { incident lay } \\
& \vec{v}=v_{k} \hat{i}+v_{y} \hat{\imath}+v_{z} \hat{k}
\end{aligned}
$$

1.1t reflection N(xz plane-ycomponent reverses

$$
\begin{aligned}
& \begin{array}{lll}
2^{n d} " & " x y " & -z \\
3^{r=} & " y z &
\end{array} \\
& \vec{v}_{f}=-v_{x} \hat{\imath}-v_{y} \hat{\jmath}-v_{z} \hat{k}=-\vec{v} \text { ! }
\end{aligned}
$$

corner reflector will send beam back in same direction originated?

But sliplity displaced

Total interval reflection
going from regin 1 to 2 where $n_{1}>n_{2}$
\Rightarrow bent away from normal

at some "critical angle" $\theta_{c}, \theta_{2}=90^{\circ}$

$$
u_{1} \sin \theta_{c}=u_{2} \sin 90^{\circ}=u_{2}
$$

any angle $\theta_{1}>\theta_{c}$ will not be transmitted ont of region $1 \Rightarrow$ total interval reflection
ex: water $n=1.5$, air $=1.0$

$$
1.5 \sin \theta_{c}=1 \Rightarrow \sin \theta_{c}=\frac{1}{15} \Rightarrow \theta_{c}=41.8^{\circ}
$$

remember θ_{1} is angle wot normal!
for water air $\theta_{1}<\theta_{s}$ will be re fleeted \Rightarrow what does a fish see from inside aquainn?
\Rightarrow Discuss fiber optics ε porro prisms for binocs

want to make critical angle small so that move light rages stay in filer

$$
\sin \theta_{c}=\frac{\text { ncladduis }}{n_{\text {core }}}
$$

to minimize θ_{c} minimize $\sin \theta_{c} \therefore$ make cladding small and core large
$n_{2 l a d d r i j}=1$ smallest possible
glass: $n_{\text {core }}=1.5$

$$
\sin \theta_{c}=\frac{1}{1.5}=0.67 \quad \theta_{c}=41.8^{\circ}
$$

diamond: $U_{\text {core }}=2.4$

$$
\sin \theta_{c}=\frac{1}{2.4}=0.42 \quad \theta_{c}=24.60
$$

that means any light nay at 90-24.6= wot boundary will stay in! 65.40

Fiber optics use cladding cores that have similar insure σ re reaction
ex: core is silica dopes of germanium $n=1.465$ cladding is pure silica $u=1.450$

$$
\begin{aligned}
\sin \theta_{c} & =\frac{n_{\text {claddri }}}{n_{\text {core }}}=\frac{1.45}{1.465}=0.99 \\
\theta_{c} & =81.79
\end{aligned}
$$

Aperture

θ_{i} is the entering angle in air, $n_{i}=1$
so $\sin \theta_{i}=n_{c} \sin \theta_{2}$

$$
\begin{aligned}
\theta_{2}+\theta_{c} & =90^{\circ} \text { so } n_{c} \sin \theta_{2}=n_{c} \sin \left(90^{\circ}-\theta_{c}\right) \\
& =n_{c} \cos \theta_{c}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta_{i}=n_{c} \cos \theta_{c} \Rightarrow \cos \theta_{c}=\frac{\sin \theta_{i}}{n_{c}} \\
& \sin \theta_{c}=\frac{n_{c l}}{n_{c}} \\
& \frac{\sin \theta_{i}}{n_{c}}=\cos \theta_{c} \\
& \cos _{c}^{2}+\sin ^{2} \theta_{c}=l=\frac{\sin ^{2} \theta_{i}}{n_{c}^{2}}+\frac{n_{c l}^{2}}{n_{c}^{2}} \\
& \sin ^{2} \theta_{i}=n_{c}^{2}-n_{c l}^{2} \\
& n \sin \theta_{i}=\sqrt{u_{c}^{2}-n_{c l}^{2}}
\end{aligned}
$$

for above case, $\sin \theta_{i}=0.21$

$$
\theta_{i}=12.1^{\circ}
$$

this is the "aperture" and tells your what entering angles will keeps the light inside the fiber
\Rightarrow it is a very shallow angle to miniming light bouncing so that the pulse doesn't "spread"

Dispersion
"White light" is made up of all colors
some materials have index is refection that is dependut on wavelength
\Rightarrow this will disperse different colors during refraction
usually $n(\lambda)$ is bigger for smaller (bluer)

This is very use $/ u l$ in separating waveleny thy
Quarts, silicate flint glass, etc. is dispersive Prisms disperse light
white

blue
used in astronomy to detect wave long the
Big bang: all galaxies are moving apart \Rightarrow length scales are increasing? (balloon analogy)
\Rightarrow the fur then away a galaxy is, the faster it's receding
Atomic spectra: atoms excite è decacite and emit photons specteum of light emitted identifies th atom
$\underbrace{\|\|\|\|}_{\text {wave length }}$ atom "A"

$$
\left\|\left\|\|^{v s}| | B^{*}\right.\right.
$$

astronomers use prisms to dis perse light
so they can see the pattern
the ware lengths will be doppler shifted due to the relative motion
$\|\|\|$ no velocity
$\|\|\|$ elative velocity Δv
$\Delta\rangle$ red shift related to

$$
v=\lambda f
$$

$\Delta v=f \Delta \lambda$ (close enough, need special relativity)
Hubble's constant - relates distance to
 val
by using prisurs : atomic spectroscopy we can map the galaxies in the universe?

Polarization
this about the wave nature if light (ron wave equation $\Rightarrow \vec{E}=E_{0} \hat{x} \cos (k x-\omega t)$
here the vector nature is constant along \hat{x} direction
waves w /constant direction are linearly polarized can make materials that hove "preferred" directions, will only let light thu of polarization is parallel to that direction
\Rightarrow called polarigíc filter, or polarizer
Polarizer direction of EM wave is usually the direction of \vec{E} field, not \vec{B}
For polaninger filter, want direction to math to get hans mission
Pdanizer filter can pick out direction b light polarization
unpolaniggd light
super position of lots of light waves w/ random polcuigation

Polarizer fitter will only allow light polourzed along direction of planizution of filter to pass
Sunglasses filter intensity so light is not
too bidet too bight
\Rightarrow if B_{0} is initial intensity of unpolanised light, $I_{t}=D_{0} / 2$ What happens won light hits a material?
$\Rightarrow l i g h t=E M$ waves, ω / E fields
there fields accelerate a toms
Reflected light is the re emission away from the suface!
Refracted light is remizsor inside the material

The treatment of of lection is refraction af the atomic level is very complex!

The thins fo understand:

- light consists, oscillating E. Fields
that accelerate a toms
- accelerating atoms radiate light
only
Polarized intensity - hight oscillating along polaigg
 direction is
 transmits

$$
\begin{aligned}
& I_{\text {inc }}=\varepsilon_{0} E_{\text {inc }}^{2} C \\
& I_{\text {trance }}=\varepsilon_{0} E_{\text {hans }}^{2} c=\varepsilon_{0} E_{\text {inc }}^{2} \cos ^{2} \phi C=I_{i n} \cos ^{2} \phi
\end{aligned}
$$

do demo wi 3 polaroid filters

domo w/ 3 polarighs

$$
\begin{gathered}
\cos \theta=\sin \phi \\
\& I_{\text {hars }}=\frac{I_{0}}{2} \cos ^{2} \phi \sin ^{2} \phi
\end{gathered}
$$

Reflection at a surface

the incoming wave will have ar oscillating E- fired:

$$
\vec{E}=\vec{E}_{u}+\vec{E}_{+}
$$

\vec{E}_{1} is parallel to surface
\vec{E}_{\perp} is 1 to enface
remember: $\vec{E} 1$ direction of propagation
a toms on the surface will tend to move along surface and not into sen face
so only \vec{E} "component causes acceleration
"." ". "is re elected
\Rightarrow Reflected lIght is strongly polarized parallel to surface y reflection

incident unplaringed light at $\theta_{\text {. }}$
reflected light is polarized parallel to goorend refracted light has both II $\dot{1}$ polarizations
\Rightarrow what if $\theta_{2}+\theta_{1}=90^{\circ}$? then $\alpha=90^{\circ}$
conservation folectic field: transmitted light is all $\frac{1}{}$ polarized so reflected light is completely polunsied 11 to surface this condition:

$$
\begin{align*}
n_{1} \sin \theta_{1} & =n_{2} \sin \theta_{2} & & \theta_{1}=\theta_{r} \\
& =n_{2} \cos \theta_{r} & & \theta_{2}=90-\theta_{r} \\
& =n_{2} \cos \theta_{1} & & \tag{r}\\
\tan \theta_{1} & =\frac{n_{2}}{n_{1}} \quad & & \theta_{2}
\end{align*}
$$

polaroid sunglasses:

Liquid Mystas
liquids wal crystal domains like iron

- Is polarizer will only allow I direction f polarization to pass
- LC will rotate light so it gets thu $2^{\text {and }}$ Filter
- apply voltage to LC i crystals live up

out filter blocks all light
voltages can con thiol whether pixel is orloff

LCD: has array of pixels + back light computer controls which pixel is onloff color is implemented usrig color filters
\Rightarrow contrast is important in LCD's

- can make LC layer thicker to racrease contrast
- but switching LC direction is not instant
so thickness * time \sim constant
faster LCD's mean less contrast more contrast mans cun't resh as fast
go over 2 polarizer $+3 r$ rd
do calculation
discuss LCD

